System Identification Based on Quantized I/O Data Corrupted with Noises

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian kernel-based system identification with quantized output data

In this paper we introduce a novel method for linear system identification with quantized output data. We model the impulse response as a zero-mean Gaussian process whose covariance (kernel) is given by the recently proposed stable spline kernel, which encodes information on regularity and exponential stability. This serves as a starting point to cast our system identification problem into a Ba...

متن کامل

System Identification Based on Frequency Response Noisy Data

In this paper, a new algorithm for system identification based on frequency response is presented. In this method, given a set of magnitudes and phases of the system transfer function in a set of discrete frequencies, a system of linear equations is derived which has a unique and exact solution for the coefficients of the transfer function provided that the data is noise-free and the degrees of...

متن کامل

System Identification Based on Frequency Response Noisy Data

In this paper, a new algorithm for system identification based on frequency response is presented. In this method, given a set of magnitudes and phases of the system transfer function in a set of discrete frequencies, a system of linear equations is derived which has a unique and exact solution for the coefficients of the transfer function provided that the data is noise-free and the degrees of...

متن کامل

Advanced software tools for parametric identification based on quantized data

Parametric estimation of signals, based on quantized data, is often carried out by means of least squares (LS) or averaging techniques. Such an approach often leads to optimal performance, resulting in almost unbiased estimators when the quantization error can approximately be modeled as an additive white Gaussian noise, or when other additive white Gaussian noise sources are larger than the qu...

متن کامل

Statistical results for system identification based on quantized observations

System identification based on quantized observations requires either approximations of the quantization noise, leading to suboptimal algorithms, or dedicated algorithms taylored to the quantization noise properties. This contribution studies fundamental issues in estimation that relate directly to the core methods in system identification. As a first contribution, results from statistical quan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the Institute of Systems, Control and Information Engineers

سال: 2007

ISSN: 1342-5668,2185-811X

DOI: 10.5687/iscie.20.177